Conformity evaluation and \(L_1\)-norm principal-component analysis of tensor data

Konstantinos Tountas\(^a\), Dimitris A. Pados\(^a\), and Michael J. Medley\(^b\)

\(^a\)Department of Electrical and Computer Engineering & Computer Science
Florida Atlantic University, Boca Raton, FL 33431
\(^b\)US Air Force Research Laboratory, Rome, NY 13440

ABSTRACT
Multi-modal tensor data sets arise with increasing frequency in modern day scientific and engineering applications, for example in biomedical sciences and autonomous engineered systems. Over the past twenty years, tensor-domain data analysis has been attempted primarily in the context of standard (\(L_2\)-norm) eigenvector decompositions across tensor domains. The algorithms are not joint-tensor-domain optimal and exhibit the familiar sensitivity to faulty/corrupted/missing measurements that characterizes all \(L_2\)-norm principal-component analysis methods.

In this work, we present a robustified method to evaluate the conformity of tensor data entries with respect to the whole accessible data set. Conformity evaluation is based on a continuously refined sequence of calculated \(L_1\)-norm tensor subspaces. The theoretical developments are illustrated in the context of a multisensor localization application that indicates unprecedented estimation performance and resistance to intermittent disturbances. An electroencephalogram (EEG) data analysis experiment is also presented.

Keywords: \(L_1\)-norm, data conformity, conformity evaluation, tensors, tensor decomposition, anomaly detection, principal-component analysis.

1. INTRODUCTION
In many real-world applications such as social networking data mining,\(^1\) video processing, biomedical signal processing, wireless communications,\(^2,3\) and network traffic analysis,\(^4,5\) the use of high-dimensional tensor datasets (multi-way arrays of order greater than two) has become prominent in order to capture relationships between multi-modal data. The dimensionality of such data sets is usually high. Fortunately, high dimensional data sets have frequently an intrinsic low-rank structure that can be captured through dimensionality reduction techniques. Subspace estimation methods such as principal-component analysis (PCA) has been widely applied for dimensionality reduction in matrix data sets due to their simplicity and effectiveness. Given a data set, PCA finds a set of projection vectors (called principal components) that maximize a norm of the projection of the data points. Conventional PCA uses the \(L_2\)-norm and is prone to misrepresentation of the data characteristics in the presence of outliers (the effect of outliers is exaggerated by the use of the \(L_2\)-norm.) To alleviate this problem, there has been a growing interest in robust PCA calculations by explicit \(L_1\)-norm projection maximization.\(^6\) The exact calculation of \(L_1\)-norm principal components was presented in\(^7\) for the first time in the literature. Later, suboptimal algorithms were developed\(^8\) for fast computation of the \(L_1\) principal components.

For tensor data sets, similar to matrix PCA, the TUCKER decomposition strives to jointly decompose the collected n-way tensors and unveil the low-rank multi-linear data structure. Higher-Order SVD (HOSVD)\(^9\) and Higher-Order Orthogonal Iteration (HOOI)\(^10\) algorithms are well-known solvers for TUCKER decompositions. A detailed presentation of TUCKER decompositions and the respective solvers is offered in\(^10,11\). Note that both types of solvers can generally only guarantee a locally optimal solution. Both HOSVD and HOOI base the calculation of the underlying subspaces on the \(L_2\)-norm.\(^12,13\) Similar to,\(^6\) the work in\(^14\) reformulates the

Konstantinos Tountas: E-mail: ktountas2017@fau.edu
Dimitris A. Pados.: E-mail: dpados@fau.edu
Michael J. Medley: E-mail: michael.medley@us.af.mil
TUCKER2 problem ($(n-1)$-way analysis of the tensor, where one dimension of the tensor (usually the sample space) is not taken into account) and use the L_1-norm for alleviating the effects of the outliers.

In spite of their robustness, for a given data set with potential outliers, the existing L_1-TUCKER methods calculate “one-shot” L_1-norm subspaces, which can still be away from the true nominal subspaces of interest when the data sets are significantly contaminated. In this paper, we propose an iterative approach that generates an iteratively refined sequence of improved L_1-norm subspaces. In each iteration, for each mode of the tensor, the conformity of each sample is inferred by its distance relative to the L_1-norm subspaces calculated in the previous iteration. Highly conforming samples tend to be nominal samples; samples with lower conformity are more likely to be outliers. Then, all the samples of the original tensor data set are weighted by their conformity values and the L_1-norm principal components of each mode are re-calculated. This way the contribution of outlying samples in the tensor data set is further suppressed, resulting in improved L_1-norm subspaces.

The remaining of this paper is organized as follows. In Section 2, we provide a detailed presentation of the TUCKER decomposition, L_1-norm PCA, as well as the necessary terminology and operations involving tensors. In Section 3, we develop the iteratively refined L_1-norm PCA algorithm for tensor data. In Section 4, the effectiveness of the proposed algorithm is demonstrated through two experiments: (i) joint direction-of-arrival estimation and signature identification in an all-spectrum communication system, and (ii) supervised classification of smoking versus non-smoking patients from EEG data from the UCI machine learning data set. Finally, a few conclusions are drawn in Section 5.

2. BACKGROUND

Next we describe necessary terminology and operations regarding tensors. We also provide an overview of the Tucker model and L_1-PCA. In Table 1, we list the notation used throughout the paper.

2.1 Tensors and Tensor Operations

The order of a tensor is the number of its dimensions, also known as ways or modes. A fiber is a vector extracted from a tensor by fixing all modes but one. A slice of a tensor is a matrix extracted from a tensor by fixing all modes but two. In particular, the $[X]_{i:n}$ slices of a third-order tensor X are called the frontal ones and we succinctly denote them as X_n. Matricization, also known as reshaping or unfolding, logically reorganizes tensors into other forms without changing the tensor values themselves. The mode-n matricization of a N-order tensor $X \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ is denoted by $X_{(k)} \in \mathbb{R}^{I_n \times I_1 \times \cdots \times I_{k-1} \times I_{k+1} \times \cdots \times I_N}$ and arranges the mode-n fibers of the tensor as columns of the resulting matrix. The tensor product or outer product of vectors $a \in \mathbb{R}^{D \times 1}$ and $b \in \mathbb{R}^{L \times 1}$ is defined as the $D \times L$ matrix $a \otimes b$ with elements $[a \otimes b]_{i,j} = [a]_i [b]_j, \forall i,j$. Introducing a third vector $c \in \mathbb{R}^{N \times 1}$ we can generalize to the outer product of three vectors, which is an $D \times L \times N$ third-order tensor $a \otimes b \otimes c$ with elements $[a \otimes b \otimes c]_{i,j,k} = [a]_i [b]_j [c]_k, \forall i,j,k$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{X}, X, x</td>
<td>Tensor, matrix, vector, scalar</td>
</tr>
<tr>
<td>$[X]{i:n}, [X]{i:c}$</td>
<td>i-th column and row of X (same for tensors)</td>
</tr>
<tr>
<td>diag (x)</td>
<td>Diagonal matrix with vector x on the diagonal</td>
</tr>
<tr>
<td>vec (X)</td>
<td>Stacking all input matrix columns in vector form</td>
</tr>
<tr>
<td>X_n</td>
<td>Shorthand for $[X]_{i:n}$ (n-th frontal slice of tensor X)</td>
</tr>
<tr>
<td>$X_{(n)}$</td>
<td>Mode-n matricization of tensor X</td>
</tr>
<tr>
<td>\otimes</td>
<td>Hadamard product (elementwise product of two tensors)</td>
</tr>
<tr>
<td>\otimes</td>
<td>Kronecker product</td>
</tr>
<tr>
<td>\otimes</td>
<td>Outer product</td>
</tr>
</tbody>
</table>

Table 1: Notation used throughout the paper.
2.2 TUCKER Model

The TUCKER decomposition of a third-order tensor $X \in \mathbb{R}^{D \times L \times N}$ strives to jointly decompose the collected three-dimensional tensor and unveil the low-rank multilinear structure of the underlying data distribution. Formally, the decomposition approximates the tensor by a sum of three outer products

$$X \approx \sum_{r=1}^{R} u_r \otimes v_r \otimes w_r,$$

where $u_r \in \mathbb{R}^{D \times 1}$, $v_r \in \mathbb{R}^{L \times 1}$, and $w_r \in \mathbb{R}^{N \times 1}$, and $u_i^Tu_j = v_i^Tv_j = w_i^Tw_j = 0, \forall i, j, i \neq j$. If we assemble the column vectors u_r, v_r, w_r, as: $U = [u_1, u_2, \ldots, u_R] \in \mathbb{R}^{D \times R}$, $V = [v_1, v_2, \ldots, v_R] \in \mathbb{R}^{L \times R}$, and $W = [w_1, w_2, \ldots, w_R] \in \mathbb{R}^{N \times R}$, then U, V, W are called the factor matrices. An equivalent, more intuitive formulation of (1) w.r.t the frontal slices X_n of the input tensor $X \in \mathbb{R}^{D \times L \times N}$ is

$$X_n \simeq US_nV^H, \quad k = 1, 2, \ldots, N,$$

where $S \in \mathbb{R}^{R \times R \times N}$ is an auxiliary tensor. Each frontal slice S_n of S contains the row vector $[W]_{n,:}$ along its diagonal, i.e., $S_k = \text{diag} \left([W]_{n,:}\right)$. Equation (2) provides an intuitive interpretation of the TUCKER decomposition, through its correspondence with L_2-norm PCA: each slice X_n is decomposed to a set of factor matrices U, V (similar to the singular vectors) which are common for all the slices, and a diagonal middle matrix (similar to the singular values) which varies for each n-th slice. The low-rank approximation problem can be written as

$$\left(\hat{U}, \hat{V}, \hat{W}\right) = \arg \max_{U \in \mathbb{R}^{D \times R_1}, U^TU = I_{R_1}, \quad V \in \mathbb{R}^{L \times R_2}, V^TV = I_{R_2}, \quad W \in \mathbb{R}^{N \times R_3}, W^TW = I_{R_3}} \|U^TX(V \otimes W)\|_F^2,$$

where $\|\cdot\|_F$ returns the summation of the absolute squares of the input matrix elements. The most popular algorithm for fitting the TUCKER model is the TUCKER-Alternating Least Squares (ALS); the main idea behind this method is to solve for one factor matrix at a time by fixing the rest. In that way, each subproblem is reduced to a linear least-squares problem.

![Figure 1: Compact (reduced) TUCKER model: R_1, R_2, R_3 are the mode (row, column, fiber, respectively) ranks of X.](image)

2.3 L_1-norm Principal Component Analysis

For $N = 1$, the third-order tensor $X \in \mathbb{R}^{D \times L \times N}$ is converted to a $D \times L$ matrix X. The low-rank approximation problem in (3) is then simplified to

$$(U, V) = \arg \max_{U \in \mathbb{R}^{D \times R_1}, U^TU = I_{R_1}, \quad V \in \mathbb{R}^{L \times R_2}, V^TV = I_{R_2}} \|U^TXV\|_F^2,$$

for which the optimal U and V are built optimally by the R_1 left-hand and R_2 right-hand singular vectors of X, respectively.
In the matrix case the columns of \(X \) are the real-valued sample vectors of the data matrix; it is of interest to calculate the principle components corresponding to the features of our data, not the samples. Hence, the rank-\(R_1 \) approximation problem can be written as

\[
Q_{L_1} = \underset{Q \in \mathbb{B}^{D \times R_1}, \ Q^T Q = I_{R_1}}{\text{argmax}} \left\| X^T Q \right\|_2.
\]

(5)

Motivated by its resistance to anomalous data \(L_1 \)-norm decomposition was proposed for robust low-rank subspace computation. Replacing the \(L_2 \)-norm in (5) by the \(L_1 \)-norm the so-called \(L_1 \)-norm PCA calculates principal components in the form

\[
Q_{L_1} = \underset{Q \in \mathbb{B}^{D \times R_1}, \ Q^T Q = I_{R_1}}{\text{argmax}} \left\| X^T Q \right\|_1,
\]

(6)

where \(\left\| \cdot \right\|_1 \) returns the sum of the absolute values of its input matrix elements. \(Q_{L_1} \) in (6) is likely to be closer to the true nominal rank-\(R_1 \) subspace than \(Q_{L_2} \). As shown in,\(^8\) the exact calculation of the \(L_1 \)-norm principal components in Eq. (6) can be written as a combinatorial problem

\[
Q_{L_1} = \underset{Q \in \mathbb{B}^{D \times R_1}, \ Q^T Q = I_{R_1}}{\text{max}} \left\| X^T Q \right\|_1 = \underset{Q \in \mathbb{B}^{D \times R_1}, \ Q^T Q = I_{R_1}}{\text{max}} \underset{B \in \{\pm 1\}^{L \times R_1}}{\text{max}} \text{tr} (Q^T XB) = \underset{B \in \{\pm 1\}^{L \times R_1}}{\text{max}} \left\| XB \right\|_1.
\]

(7)

The optimal solution for (7) can be obtained by exhaustive search in the space of the binary antipodal matrix \(B \) with complexity \(O \left(2^{LR_1} \right) \). By denoting \(B_{\text{OPT}} \) the optimal solution, we perform SVD on \(XB_{\text{OPT}} = U \Sigma V^T \) and form the \(L_1 \)-norm principal components as \(Q_{L_1} = [U]_{:,R_1} \ V^T \). Therefore, the overall complexity for finding \(R_1 \) \(L_1 \)-norm principal components via exhaustive search is \(O \left(2^{LR_1} \min \{D^2 R_1, DR_1^2\} \right) \).

In,\(^8\) a fast greedy single-bit-flipping (SBF) algorithm was proposed for the computation of the rank-1 \(L_1 \)-norm principal components with complexity \(O \left(L^2 R_1 \right) \). The suboptimal algorithm is extended in\(^7\) for the calculation of the \(R_1 < \text{rank} \ (X) \) \(L_1 \)-norm principal components of \(X \) with complexity \(O \left(L D \text{min} \{L, D\} + L^2 \left(R_1^4 + \text{rank} \ (X) R_1^2 \right) + \text{rank} \ (X) LR_1^3 \right) \). The SBF algorithm for rank \(R_1 > 1 \) starts with an initial binary matrix \(B_{\text{init}} \in \{\pm 1\}^{L \times R_1} \) and iteratively produces a sequence of new binary matrices \(B^l, l = 1, 2, \ldots \) where \(B^{l+1} \) at the \((l + 1) \)-th iteration differs from \(B^l \) only in a single bit position. At each iteration, just the bit that results in the highest increase of \(\left\| XB \right\|_1 \) is flipped to reach a (suboptimal) solution of (7), denoted as \(\hat{B} \). The associated \(L_1 \)-norm projection operator \(Q_{L_1} \) can be obtained by performing the following steps: 1) Perform SBF with input \(B_{\text{init}} \) to obtain \(\hat{B} \), 2) Perform SVD on \(X \hat{B} = U \Sigma \hat{V}^T \), and 3) Return \(Q_{L_1} = [U]_{:,R_1} \ V^T \).

3. ITERATIVE \(L_1 \)-TENSOR DECOMPOSITION WITH DATA CONFORMITY CONSIDERATIONS

3.1 Methodology

Motivated by the challenges presented in Section 2, we propose an iterative algorithm for tensor decomposition, that exploits the outlier resistance properties of \(L_1 \)-norm PCA. In the following, we describe the design of our algorithm for decomposing the tensor and calculating the subspaces. Without loss of generality, we present our algorithmic developments for a third order tensor \(X \in \mathbb{R}^{D \times L \times N} \). In the initialization step of the algorithm, with respect to the first mode of the tensor \(X_{(1)} \in \mathbb{R}^{D \times L \times N} \) (unfolding along the columns of the tensor) we calculate the \(R_1 \) principal components \(Q^{(0)}_{1} \in \mathbb{R}^{D \times R_1} \) by solving the maximization problem in (6). The resulting basis emphasizes the subspace spanned by the columns of the original tensor \(X \) that contain nominal data and de-emphasizes columns that are contaminated with anomalous data. Next, we calculate the orthogonal projection of each column \([X_{(1)}]_{:,i_1}, i_1 = 1, \ldots, LN\) on the calculated subspace \(Q^{(0)}_{1} \) as

\[
d_{1,i_1}^{(1)} = \left\| Q^{(0)}_{1} Q^{(0)T}_{1} [X_{(1)}]_{:,i_1} \right\|_2 \quad \forall i_1 = 1, 2, \ldots, LN.
\]

(8)
We expect small $d_{i_1}^{(1)}$ values if $[X_{(1)}]_{i_1,i}$ is an anomalous data point and large $d_{i_1}^{(1)}$ values if $[X_{(1)}]_{i_1,i}$ is a nominal data point. After the calculation of the projection of each column on the subspace, the conformity values are brought back to tensor form

$$\mathcal{W}_1^{(1)} = \text{tensorization} \left(\begin{bmatrix} d_{i_1}^{(1)} & d_{i_2}^{(1)} & \ldots & d_{i_{LN}}^{(1)} \end{bmatrix}_{LN \times 1} \circ 1_{D \times LN} \right) \in \mathbb{R}^{D \times L \times N},$$

(9)

where $1_{D \times LN}$ stands for an all-ones matrix of dimension $D \times LN$, and the tensorization operator converts the argument matricized tensor, to its original tensor form. The tensor $\mathcal{W}_1^{(1)}$ contains the conformity values corresponding to each column of the original tensor X. The same procedure is repeated for the rest of the modes calculating the corresponding conformity tensors, $\mathcal{W}_2^{(1)}, \mathcal{W}_3^{(1)}$.

With all the mode conformity tensors calculated, we then weigh them according to the "importance" of the corresponding dimension and combine them in an additive fashion. The final Step-1 conformity tensor $\tilde{\mathcal{W}}^{(1)}$ is then normalized so that each element is in the $[0, 1]$ range,

$$\tilde{\mathcal{W}}^{(1)} = \frac{\sum_{k=1}^{3} \alpha_k \mathcal{W}_k^{(1)} - \min \left(\sum_{k=1}^{3} \alpha_k \mathcal{W}_k^{(1)} \right)}{\max \left(\sum_{k=1}^{3} \alpha_k \mathcal{W}_k^{(1)} \right) - \min \left(\sum_{k=1}^{3} \alpha_k \mathcal{W}_k^{(1)} \right)}$$

(10)

where $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^+$, $\sum_{k=1}^{3} \alpha_k = 1$ (for example, $\alpha_1 = \alpha_2 = \alpha_3 = \frac{1}{3}$), model the presumed importance of the corresponding dimension of the original tensor.

A new L_1-norm subspace of each tensor mode is then calculated on the conformity-adjusted data tensor by element-by-element multiplication by the conformity tensor. For mode one for example, we calculate

$$Q_{1}^{(1)} = \text{argmax}_{Q \in \mathbb{R}^{D \times n_1}} \left\| Q^T (X_{(1)} \circ \tilde{\mathcal{W}}^{(1)}_{(1)}) \right\|_1,$$

(11)

where \circ is the element-wise (Hadamard) product. The same holds for rest of the modes. The subspaces are iteratively refined until numerical convergence of the data conformity tensor $\tilde{\mathcal{W}}^{(1)}$ is observed. In Table 1, we present the pseudo-code corresponding to the proposed algorithm for a general tensor $X_{I_1 \times I_2 \times \ldots \times I_K}$.
Table 2 Iterative L_1-norm tensor decomposition

<table>
<thead>
<tr>
<th>Input: $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_K}$, ranks $R_1, \ldots, R_K \in \mathbb{Z}^+$, and weights $\alpha_1, \ldots, \alpha_K, \in \mathbb{R}^+$, $\sum_{k=1}^{K} \alpha_k = 1$</th>
<th>Output: $\tilde{\mathcal{W}} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_K}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: for $k = 1, \ldots, K$ do</td>
<td>4: end for</td>
</tr>
<tr>
<td>2: $Q_k^{(l)} = \text{argmax}{Q \in \mathbb{R}^{I_k \times R_k}} |Q^T X{(k)}|_1$</td>
<td>5: while convergence criterion is not met do</td>
</tr>
<tr>
<td>$M_k = \prod_{i=1,i \neq k}^K I_i, \quad l = 1$</td>
<td>6: for $k = 1, \ldots, K$ do</td>
</tr>
<tr>
<td>3: end for</td>
<td>7: $d_{k,i}^{(l)} = |Q_k^{(l-1)}Q_{k}^{(l-1)^T} [X_{(k)}]_{;i,k}|_2$, $\forall i_k = 1, 2, \ldots, M_k$</td>
</tr>
<tr>
<td>4: end while</td>
<td>8: $\tilde{W}k^{(l)} \leftarrow \text{tensorization}k \left(\left[d{k,1}^{(l)} \ d{k,2}^{(l)} \ldots \ d_{k,M_k}^{(l)}\right]{M_k \times 1} \circ 1{M_k \times I_k} \right)$</td>
</tr>
<tr>
<td>5: end for</td>
<td>9: end for</td>
</tr>
<tr>
<td>6: end for</td>
<td>10: $\tilde{W}^{(l)} = \frac{\sum_{k=1}^{K} \alpha_k W_k^{(l)} - \min\left(\sum_{k=1}^{K} \alpha_k W_k^{(l)}\right)}{\max\left(\sum_{k=1}^{K} \alpha_k W_k^{(l)}\right) - \min\left(\sum_{k=1}^{K} \alpha_k W_k^{(l)}\right)}$</td>
</tr>
<tr>
<td>7: for $k = 1, \ldots, K$ do</td>
<td>11: for $k = 1, \ldots, K$ do</td>
</tr>
<tr>
<td>8: $Q_k^{(l)} = \text{argmax}{Q \in \mathbb{R}^{I_k \times R_k}} |Q^T X{(k)} \circ \tilde{W}_k^{(l)}|_1$</td>
<td>9: end for</td>
</tr>
<tr>
<td>$Q_k^{(l)} Q_{k} \leftarrow 1_{\pi_{M_k}}$</td>
<td>12: end for</td>
</tr>
<tr>
<td>9: end for</td>
<td>13: end for, $l = l + 1$</td>
</tr>
<tr>
<td>10: end while</td>
<td>14: end while</td>
</tr>
</tbody>
</table>

4. SIMULATION STUDIES

4.1 Joint Direction-of-Arrival and Waveform Identification

We consider K single-antenna spread-spectrum beacons transmitting over a single-input single-output (SISO) additive white Gaussian noise (AWGN) channel. Particularly, the k-th beacon, $k = 1, \ldots, K$ transmits symbols $b_k[n], n = 1, 2, \ldots, N$ from a complex alphabet \mathcal{C}, at rate $1/T$, modulated by a spread-spectrum digital waveform $d_k(t)$ of duration T. The transmitted signal is represented by

$$x_k(t) \triangleq \sum_{n=1}^{N} \sqrt{P_k b_k[n]} s_k(t - nT) e^{j2\pi f_c t}$$

(12)

where $P_k > 0$ denotes the transmitted energy per bit, and f_c is the carrier frequency. The spread-spectrum digital waveform is of the form

$$s_k(t) \triangleq \sum_{l=0}^{L-1} d_k[l] g_{T_c}(t - lT_c)$$

(13)

where d_k is a length L normalized antipodal sequence, i.e. $d_k \in \{ \pm 1/\sqrt{L} \}^L$, uniquely allocated to beacon k, and $g_{T_c}(\cdot)$ is a square-root raised cosine (SRRC) pulse-shaping waveform of duration T_c, so that $T = LT_c$.

The beacon signals are received by a D element antenna array from an azimuth angle ϕ and an elevation angle θ. The size $D \times 1$ array response vector $\mathbf{a}(\phi, \theta)$ to a far-field received signal that impinges on the array, is given by

$$\mathbf{a}(\phi, \theta) = \exp \left\{ j2\pi \frac{1}{\lambda_c} \mathbf{P}^T \mathbf{k}(\phi, \theta) \right\} \in \mathbb{C}^{D \times 1},$$

(14)
where λ_c is the carrier wavelength, the matrix P contains the antenna array element values

$$P = \begin{bmatrix} x_1 & x_2 & \ldots & x_D \\ y_1 & y_2 & \ldots & y_D \\ z_1 & z_2 & \ldots & z_D \end{bmatrix} \in \mathbb{R}^{3 \times D} \tag{15}$$

and the vector $k(\phi, \theta)$ represents the projection of the received signal’s steering vector on the antenna array coordinate system defined as

$$k(\phi, \theta) = \begin{bmatrix} \cos(\theta) \sin(\phi) \\ \cos(\theta) \cos(\phi) \\ \sin(\theta) \end{bmatrix} \in \mathbb{R}^{3 \times 1}. \tag{16}$$

Upon carrier demodulation at the carrier frequency f_c, pulse matched filtering, sampling at T_c, and buffering L samples, the n-th received space-code data snapshots is given by

$$Y_n = \sum_{k=1}^{K} \sqrt{T_k} b_k [n] a(\phi_k, \theta_k) s_k^T + N_n \in \mathbb{C}^{M \times L}, \quad n = 1, 2, \ldots, N, \tag{17}$$

where $[N[n]]_{i,j}$ is an additive noise component with $\mathbb{E} \{ N_n \} = 0_{M \times L}$, $\mathbb{E} \{ n_i n^H_j \} = \sigma^2 I_M, \forall i, j \in \{1, \ldots, L\}$, $i \neq j$, $\mathbb{E} \{ n_i n^H_j \} = \sigma^2 I_L, \forall i, j \in \{1, \ldots, M\}$, $i \neq j$. We define A as the set of active angle-of-arrival pairs $(\phi_k, \theta_k), k = 1, 2, \ldots, K$.

By defining the power-scaled signature matrix $S = [s_1, \ldots, s_K] \in \mathbb{R}^{K \times L}$, where $s_k = \sqrt{T_k} d_k$, the rank-M steering matrix $A = [a(\phi_1, \theta_1), \ldots, a(\phi_K, \theta_K)] \in \mathbb{C}^{M \times K}$, and a diagonal matrix $B[n] = \text{diag} ([b_1[n], b_2[n], \ldots, b_K[n]])$, the n-th received data snapshot matrix in (17) can be expressed in the following matrix form

$$Y_n = AB_n S^T + N_n, \quad n = 1, 2, \ldots, N. \tag{18}$$

We observe that the received matrices can be viewed as slices of an $M \times L \times N$ three-way tensor $Y \in \mathbb{C}^{D \times L \times N}$. Our goal is to utilize the tensor structure of our data in order to accurately estimate the angles of arrival, as well as identify the waveforms the beacons are using.

In order to begin our algorithmic developments, we define the real-valued representation $\overline{A} \in \mathbb{R}^{2m \times 2n}$ of any complex-valued matrix $A \in \mathbb{C}^{m \times n}$ by concatenating real and imaginary parts as follows

$$\overline{A} = \begin{bmatrix} \text{Re} \{A\} & -\text{Im} \{A\} \\ \text{Im} \{A\} & \text{Re} \{A\} \end{bmatrix} \in \mathbb{R}^{2m \times 2n}, \tag{19}$$

where $\text{Re} \{\cdot \}$ and $\text{Im} \{\cdot \}$ return the real and imaginary part of each matrix element, respectively. The transition from $A \in \mathbb{C}^{m \times n}$ to $\overline{A} \in \mathbb{R}^{2m \times 2n}$ is based on what is commonly referred to as complex-number realification in representation theory. Realification allows for any complex system of equations to be converted and solved through a real system. Before we proceed, we review briefly in the Lemma bellow some fundamental properties of matrix realification.

Lemma 4.1. For any $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times q}$ the following hold $\overline{(A + B)} = \overline{A} + \overline{B}$, $\overline{(AB)} = \overline{A} \overline{B}$, and $\overline{(A^T)} = \overline{A}^T$.

By (19) and Lemma 1, we define the n-th real-valued snapshot Y_n as

$$Y_n = \overline{A} \overline{B}_n S^T + \overline{N}_n \in \mathbb{R}^{2D \times 2L}, \quad n = 1, 2, \ldots, N \tag{20}$$

With the realification operation, we convert our complex tensor $Y \in \mathbb{C}^{D \times L \times N}$ to a real-valued tensor $\overline{Y} \in \mathbb{R}^{2D \times 2L \times N}$. From (20), we notice that the angle components of interest lie in the $R_1 \geq 2K$ dimensional space $S_A = \text{span} (\overline{A})$, while the waveform components of interest lie in the $2K$ dimensional space $S_D = \text{span} (\overline{S})$. The following propositions highlight the utility of S_A and S_D for estimating the target directions of arrival (DoA’s) and waveform sequences in A and D, respectively.
Proposition 1. For any pair \((\phi, \theta) \in \left(0, \frac{\pi}{2}\right]\), \(\text{span}(\mathbf{\pi}(\phi, \theta)) \subseteq \mathcal{S}_A\) if and only if \((\phi, \theta) \in \mathcal{A}\). Set equality holds only if \(K = 1\). By proposition 1, we can accurately decide whether some pair \((\phi, \theta) \in \left(0, \frac{\pi}{2}\right]\) is a target DoA or not by means of any orthonormal basis \(Q_1 \in \mathbb{R}^{2D \times 2K}\) that spans \(\mathcal{S}_A\) as

\[
(I_{2K} - Q_1Q_1^T) \mathbf{\pi}(\phi, \theta) = 0_{2K \times 2} \iff (\phi, \theta) \in \mathcal{A}.
\] (21)

Thus, in view of proposition 1, and in accordance to common practice, target DoAs in \(\mathcal{A}\) can be approximated by the \(K\) highest peaks of the MUSIC-like pseudo-spectrum defined as

\[
P_A(\phi, \theta) = \| (I_{2D} - Q_1Q_1^T) \mathbf{\pi}(\phi, \theta) \|^2
\] (22)

The same holds for the waveform estimation problem, as stated in the following proposition

Proposition 2. For any \(s \in \left\{ \pm \frac{1}{\sqrt{L}} \right\}^L\), \(\text{span}(\mathbf{s}) \subseteq \mathcal{S}_D\) if and only if \(s \in \mathcal{D}\). Set equality holds only if \(K = 1\).

By 2, the target sequences can be estimated by any \(R_D \geq 2K\) dimensional orthonormal basis \(Q_2 \in \mathbb{R}^{2L \times 2K}\) that spans \(\mathcal{S}_D\) as

\[
(I_{2K} - Q_2Q_2^T) \mathbf{s} = 0_{2L \times 2} \iff \mathbf{s} \in \mathcal{D}.
\] (23)

And the corresponding pseudo-spectrum is

\[
P_D(\mathbf{s}) = \| (I_{2L} - Q_2Q_2^T) \mathbf{s} \|^2.
\] (24)

Peaks in the two pseudo-spectra in (22) and (24) identify DoAs and waveform sequences without associating angles and sequences. In order to have this correspondence, we create all possible DoA pairs and waveform sequence candidates as

\[
z(\phi, \theta, s) = a(\phi, \theta) \otimes s \in \mathbb{C}^{ML \times 1}.
\] (25)

Then, we calculate the \(K\) principle components, \(Q_{sc}\), of the space-code matrix \(Y_{sc} = [\text{vec}(Y_1), \text{vec}(Y_2), \ldots, \text{vec}(Y_N)]\) by means of SVD. We utilize the following pseudo-spectrum to find the peaks corresponding to the exact DoAs and waveform sequence associations

\[
P_{sc}(z) = \| (I_{DL} - Q_{sc}Q_{sc}^H) z \|^2.
\] (26)

Algorithm 2 Joint direction-of-arrival estimation and waveform identification

| Input: | \(Q_1 \in \mathbb{R}^{2M \times 1}\), \(Q_2 \in \mathbb{R}^{2L \times 2K}\), \(Y \in \mathbb{R}^{2M \times 2L \times N}\) |
| Output: | \(\{(\phi_k, \theta_k) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]\text{, and} \{(s_k) \in \left\{1/\sqrt{L} \right\}^L, k = 1, \ldots, K\} \) |
| 1: | Calculate \(P_A(\phi, \theta) = \| (I_{2D} - Q_1Q_1^T) \mathbf{\pi}(\phi, \theta) \|^2 \) |
| 2: | Find the peaks of the \(P_A(\mathbf{s})\) pseudo-spectrum |
| 3: | Calculate \(P_D(\mathbf{s}) = \| (I_{2L} - Q_2Q_2^T) \mathbf{s} \|^2 \) |
| 4: | Find the peaks of the \(P_D(\mathbf{s})\) pseudo-spectrum |
| 5: | Calculate \(Q_{sc} = \text{SVD}([\text{vec}(Y_1), \text{vec}(Y_2), \ldots, \text{vec}(Y_N)])\) |
| 6: | Calculate the space-code candidates \(z(\phi, \theta, s) = a(\phi, \theta) \otimes s \in \mathbb{C}^{ML \times 1}\) |
| 7: | Calculate \(P_{sc}(z) = \| (I_{ML} - Q_{sc}Q_{sc}^H) z \|^2 \) |
| 8: | Find the peaks of the \(P_{sc}(z)\) pseudo-spectrum |

We test the effectiveness of our proposed joint direction-of-arrival estimation and signature detection method on a system with two single-antenna, all-spectrum transmitters, transmitting \(N = 10\) BPSK symbols on signatures of length \(L = 8\) from angles \((\phi_1 = -50, \theta_1 = 20)\), \((\phi_2 = 15, \theta_2 = 60)\) to a receiver equipped with a triangular array. A single-antenna, spread-spectrum interferer is transmitting with probability \(p = 0.3\) on the same signature
as transmitter 1, disrupting the joint DoA and Identification operation. Fig.2-Right depicts the pseudo-spectrum corresponding to the elevation angle, while 2-Left depicts the pseudo-spectrum corresponding to the signatures. It is clear that our proposed iteratively-refined L_1-norm tensor decomposition method produces an uncorrupted spectrum, in contrast to the HOSVD spectrum which is corrupted by the interferer. Fig. 3-Left depicts the root-mean-squared-error (RMSE), over 5000 independent realizations, of the proposed DoA estimation method, L_1-TUCKER and the standard L_2-norm PCA-based one (MUSIC), as a function of the signal-to-noise ratio (SNR) of the interferer transmitter. As shown, the proposed method offers much better RMSE performance compared against HOSVD, as well as L_1-TUCKER2. The absolute symbol error (percentage) of the signature identification is show in Fig. 3-Right. Again, the proposed method outperforms HOSVD and L_1-TUCKER.

4.2 Classification by Conformity L_1-norm PCA

We consider the problem of unsupervised classification of alcoholic versus non-alcoholic patients from electroencephalogram (EEG) data. The data set contains measurements from 64 electrodes placed on subject’s scalps which were sampled at 256 Hz (3.9-msec epoch) for 1 second, forming a series of real matrices with dimensions 64×256. Two groups of subjects exist: alcoholic and control. Each subject was exposed to either a single stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects chosen from the 1980 Snodgrass and
Vanderwart picture set. When two stimuli were shown, they were presented in either a matched condition where S1 was identical to S2 or in a non-matched condition where S1 differed from S2.

For our experiments we create a tensor data set $X \in \mathbb{R}^{60 \times 64 \times 256}$, where 60 is the number of patients, 64 is the number of electrodes, and 256 is the number of samples per patient. The data set consists of 54 control patients and 6 alcoholic patients, which we consider the outliers class. We calculate the subspaces corresponding to each dimension of the tensor X with $R_1 = 20, R_2 = 20, R_3 = 40$ principal components per dimension. Subsequently, the L_2-norm projection of each slice $[X]_{n,:,:} \in \mathbb{R}^{64 \times 256}, n = 1, \ldots, 60$ corresponding to each patient on the subspaces $\left\| Q_2^T [X]_{n,:,:} Q_3 \right\|_F$ is calculated as the outlier score, and the samples with the lowest score are detected as outliers, i.e. alcoholic patients. We carried out 100 independent experiments, and plot the receiver operating characteristic curve (ROC) of the proposed algorithm compared against HOSVD. The ROC plots the true positive rate versus the false positive rate. As shown in Fig. 4, the proposed iteratively-refined L_1 tensor decomposition method demonstrates the ability to capture the outliers significantly better than HOSVD.

5. CONCLUSION

We presented a novel, iteratively refined L_1-norm tensor decomposition algorithm, which measures the conformity of each tensor element with respect to the whole tensor data set. In each iteration, the L_1-norm subspace of each dimension computed in the previous iteration is utilized to calculate the conformity of each data sample. Non-conforming samples are weighted down, resulting in subspaces that better represent the nominal subspace of each tensor dimension. The proposed method significantly enhances performance in tasks such as DoA estimation and outlier detection, compared to traditional L_2-norm methods and L_1-TUCKER2 methods.

Acknowledgment

The work of D. A. Pados was supported by the Schmidt Family Foundation, Boca Raton, FL.

REFERENCES

